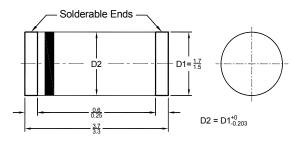
F.E.C. Semiconductor


SURFACE MOUNT SCHOTTKY BARRIER RECTIFIER LM5817 THRU LM5819

Features

- Metal silicon junction, majority carrier conduction
- Low power loss, high efficiency
- Guard ring for overvoltage protection
- · High current capability, low forward voltage drop
- · High surge capability
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications

Mechanical Data

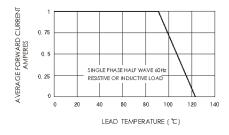
- · Case: MiniMELF (DO-213AA), molded plastic body
- Terminals: Solder plated, solderable per MIL-STD-750, method 2026
- Polarity: Color band denotes cathode end
- Mounting Position: Any

Dimensions in millimeters MiniMELF (DO-213AA)

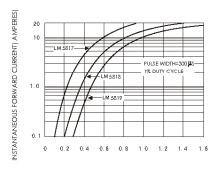
Absolute Maximum Ratings and Characteristics

Ratings at 25 °C ambient temperature unless otherwise specified, single phase, half wave, resistive or inductive load. For capacitive load, derate by 20%

Parameter	Symbols	LM5817	LM5818	LM5819	Units
Maximum Repetitive Peak Reverse Voltage	V _{RRM}	20	30	40	V
Maximum RMS Voltage	V _{RMS}	14	21	28	V
Maximum DC Blocking Voltage	V _{DC}	20	30	40	V
Maximum Average Forward Rectified Current	I _{F(AV)}	1			А
Peak Forward Surge Current 8.3 ms Single Half Sine Wave Superimposed on Rated Load(JEDEC methode)	I _{FSM}	25			А
Maximum Instantaneous Forward Voltageat $I_F = 1 A$ at $I_F = 3 A$		0.45 0.75	0.55 0.875	0.6 0.9	V
Maximum Instantaneous Reverse Current at $T_A = 25 \ ^{\circ}C$ Rated DC Blocking Voltage 1) $T_A = 100 \ ^{\circ}C$	I _R	0.5 10			mA
Typical Junction Capacitance ²⁾	CJ	110			pF
Typical Thermal Resistance, Junction to Ambient ³⁾ Typical Thermal Resistance, Junction to Terminal ⁴⁾	R _{θJA} R _{θJL}	75 30			°C/W
Operating Junction Temperature Range	Tj	- 55 to + 125			°C
Storage Temperature Range	T _{stg}	- 55 to + 150			°C

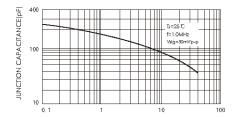

¹⁾ Pulse test: 300 µs pulse width, 1% duty cycle

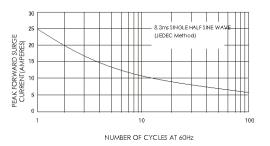
 $^{\rm 2)}$ Mearsured at 1 MHz and reverse voltage of 4 V


³⁾ Thermal resistance junction to ambient 0.24" X 0.24"(6 X 6 mm) copper pads to each terminals

⁴⁾ Thermal resistance junction to terminal 0.24" X 0.24"(6 X 6 mm) copper pads to each terminals

FIG.1-FORWARD CURRENT DERATING CURVE





INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

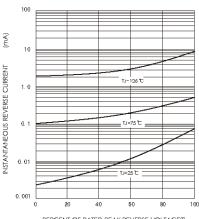

FIG.5-TYPICAL JUNCTION CAPACITANCE

FIG.2-MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

FIG.4-TYPICAL REVERSE CHARACTERISTICS

PERCENT OF RATED PEAK REVERSE VOLTAGE%